\(\int \tan ^3(c+d x) \sqrt {a+b \tan (c+d x)} \, dx\) [504]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [B] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [F(-1)]
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 23, antiderivative size = 159 \[ \int \tan ^3(c+d x) \sqrt {a+b \tan (c+d x)} \, dx=\frac {\sqrt {a-i b} \text {arctanh}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a-i b}}\right )}{d}+\frac {\sqrt {a+i b} \text {arctanh}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a+i b}}\right )}{d}-\frac {2 \sqrt {a+b \tan (c+d x)}}{d}-\frac {4 a (a+b \tan (c+d x))^{3/2}}{15 b^2 d}+\frac {2 \tan (c+d x) (a+b \tan (c+d x))^{3/2}}{5 b d} \]

[Out]

arctanh((a+b*tan(d*x+c))^(1/2)/(a-I*b)^(1/2))*(a-I*b)^(1/2)/d+arctanh((a+b*tan(d*x+c))^(1/2)/(a+I*b)^(1/2))*(a
+I*b)^(1/2)/d-2*(a+b*tan(d*x+c))^(1/2)/d-4/15*a*(a+b*tan(d*x+c))^(3/2)/b^2/d+2/5*tan(d*x+c)*(a+b*tan(d*x+c))^(
3/2)/b/d

Rubi [A] (verified)

Time = 0.40 (sec) , antiderivative size = 159, normalized size of antiderivative = 1.00, number of steps used = 11, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.348, Rules used = {3647, 3711, 12, 3609, 3620, 3618, 65, 214} \[ \int \tan ^3(c+d x) \sqrt {a+b \tan (c+d x)} \, dx=\frac {\sqrt {a-i b} \text {arctanh}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a-i b}}\right )}{d}+\frac {\sqrt {a+i b} \text {arctanh}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a+i b}}\right )}{d}-\frac {4 a (a+b \tan (c+d x))^{3/2}}{15 b^2 d}+\frac {2 \tan (c+d x) (a+b \tan (c+d x))^{3/2}}{5 b d}-\frac {2 \sqrt {a+b \tan (c+d x)}}{d} \]

[In]

Int[Tan[c + d*x]^3*Sqrt[a + b*Tan[c + d*x]],x]

[Out]

(Sqrt[a - I*b]*ArcTanh[Sqrt[a + b*Tan[c + d*x]]/Sqrt[a - I*b]])/d + (Sqrt[a + I*b]*ArcTanh[Sqrt[a + b*Tan[c +
d*x]]/Sqrt[a + I*b]])/d - (2*Sqrt[a + b*Tan[c + d*x]])/d - (4*a*(a + b*Tan[c + d*x])^(3/2))/(15*b^2*d) + (2*Ta
n[c + d*x]*(a + b*Tan[c + d*x])^(3/2))/(5*b*d)

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rule 3609

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[d*
((a + b*Tan[e + f*x])^m/(f*m)), x] + Int[(a + b*Tan[e + f*x])^(m - 1)*Simp[a*c - b*d + (b*c + a*d)*Tan[e + f*x
], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && GtQ[m, 0]

Rule 3618

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[c*(
d/f), Subst[Int[(a + (b/d)*x)^m/(d^2 + c*x), x], x, d*Tan[e + f*x]], x] /; FreeQ[{a, b, c, d, e, f, m}, x] &&
NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && EqQ[c^2 + d^2, 0]

Rule 3620

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[(c
 + I*d)/2, Int[(a + b*Tan[e + f*x])^m*(1 - I*Tan[e + f*x]), x], x] + Dist[(c - I*d)/2, Int[(a + b*Tan[e + f*x]
)^m*(1 + I*Tan[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0]
&& NeQ[c^2 + d^2, 0] &&  !IntegerQ[m]

Rule 3647

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Si
mp[b^2*(a + b*Tan[e + f*x])^(m - 2)*((c + d*Tan[e + f*x])^(n + 1)/(d*f*(m + n - 1))), x] + Dist[1/(d*(m + n -
1)), Int[(a + b*Tan[e + f*x])^(m - 3)*(c + d*Tan[e + f*x])^n*Simp[a^3*d*(m + n - 1) - b^2*(b*c*(m - 2) + a*d*(
1 + n)) + b*d*(m + n - 1)*(3*a^2 - b^2)*Tan[e + f*x] - b^2*(b*c*(m - 2) - a*d*(3*m + 2*n - 4))*Tan[e + f*x]^2,
 x], x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0]
&& IntegerQ[2*m] && GtQ[m, 2] && (GeQ[n, -1] || IntegerQ[m]) &&  !(IGtQ[n, 2] && ( !IntegerQ[m] || (EqQ[c, 0]
&& NeQ[a, 0])))

Rule 3711

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)] + (C_.)*tan[(e_.) + (
f_.)*(x_)]^2), x_Symbol] :> Simp[C*((a + b*Tan[e + f*x])^(m + 1)/(b*f*(m + 1))), x] + Int[(a + b*Tan[e + f*x])
^m*Simp[A - C + B*Tan[e + f*x], x], x] /; FreeQ[{a, b, e, f, A, B, C, m}, x] && NeQ[A*b^2 - a*b*B + a^2*C, 0]
&&  !LeQ[m, -1]

Rubi steps \begin{align*} \text {integral}& = \frac {2 \tan (c+d x) (a+b \tan (c+d x))^{3/2}}{5 b d}+\frac {2 \int \sqrt {a+b \tan (c+d x)} \left (-a-\frac {5}{2} b \tan (c+d x)-a \tan ^2(c+d x)\right ) \, dx}{5 b} \\ & = -\frac {4 a (a+b \tan (c+d x))^{3/2}}{15 b^2 d}+\frac {2 \tan (c+d x) (a+b \tan (c+d x))^{3/2}}{5 b d}+\frac {2 \int -\frac {5}{2} b \tan (c+d x) \sqrt {a+b \tan (c+d x)} \, dx}{5 b} \\ & = -\frac {4 a (a+b \tan (c+d x))^{3/2}}{15 b^2 d}+\frac {2 \tan (c+d x) (a+b \tan (c+d x))^{3/2}}{5 b d}-\int \tan (c+d x) \sqrt {a+b \tan (c+d x)} \, dx \\ & = -\frac {2 \sqrt {a+b \tan (c+d x)}}{d}-\frac {4 a (a+b \tan (c+d x))^{3/2}}{15 b^2 d}+\frac {2 \tan (c+d x) (a+b \tan (c+d x))^{3/2}}{5 b d}-\int \frac {-b+a \tan (c+d x)}{\sqrt {a+b \tan (c+d x)}} \, dx \\ & = -\frac {2 \sqrt {a+b \tan (c+d x)}}{d}-\frac {4 a (a+b \tan (c+d x))^{3/2}}{15 b^2 d}+\frac {2 \tan (c+d x) (a+b \tan (c+d x))^{3/2}}{5 b d}-\frac {1}{2} (-i a-b) \int \frac {1+i \tan (c+d x)}{\sqrt {a+b \tan (c+d x)}} \, dx-\frac {1}{2} (i a-b) \int \frac {1-i \tan (c+d x)}{\sqrt {a+b \tan (c+d x)}} \, dx \\ & = -\frac {2 \sqrt {a+b \tan (c+d x)}}{d}-\frac {4 a (a+b \tan (c+d x))^{3/2}}{15 b^2 d}+\frac {2 \tan (c+d x) (a+b \tan (c+d x))^{3/2}}{5 b d}-\frac {(a-i b) \text {Subst}\left (\int \frac {1}{(-1+x) \sqrt {a-i b x}} \, dx,x,i \tan (c+d x)\right )}{2 d}-\frac {(a+i b) \text {Subst}\left (\int \frac {1}{(-1+x) \sqrt {a+i b x}} \, dx,x,-i \tan (c+d x)\right )}{2 d} \\ & = -\frac {2 \sqrt {a+b \tan (c+d x)}}{d}-\frac {4 a (a+b \tan (c+d x))^{3/2}}{15 b^2 d}+\frac {2 \tan (c+d x) (a+b \tan (c+d x))^{3/2}}{5 b d}+\frac {(i a-b) \text {Subst}\left (\int \frac {1}{-1+\frac {i a}{b}-\frac {i x^2}{b}} \, dx,x,\sqrt {a+b \tan (c+d x)}\right )}{b d}-\frac {(i a+b) \text {Subst}\left (\int \frac {1}{-1-\frac {i a}{b}+\frac {i x^2}{b}} \, dx,x,\sqrt {a+b \tan (c+d x)}\right )}{b d} \\ & = \frac {\sqrt {a-i b} \text {arctanh}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a-i b}}\right )}{d}+\frac {\sqrt {a+i b} \text {arctanh}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a+i b}}\right )}{d}-\frac {2 \sqrt {a+b \tan (c+d x)}}{d}-\frac {4 a (a+b \tan (c+d x))^{3/2}}{15 b^2 d}+\frac {2 \tan (c+d x) (a+b \tan (c+d x))^{3/2}}{5 b d} \\ \end{align*}

Mathematica [A] (verified)

Time = 1.00 (sec) , antiderivative size = 140, normalized size of antiderivative = 0.88 \[ \int \tan ^3(c+d x) \sqrt {a+b \tan (c+d x)} \, dx=\frac {15 \sqrt {a-i b} \text {arctanh}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a-i b}}\right )+15 \sqrt {a+i b} \text {arctanh}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a+i b}}\right )+\frac {2 \sqrt {a+b \tan (c+d x)} \left (-2 a^2-15 b^2+a b \tan (c+d x)+3 b^2 \tan ^2(c+d x)\right )}{b^2}}{15 d} \]

[In]

Integrate[Tan[c + d*x]^3*Sqrt[a + b*Tan[c + d*x]],x]

[Out]

(15*Sqrt[a - I*b]*ArcTanh[Sqrt[a + b*Tan[c + d*x]]/Sqrt[a - I*b]] + 15*Sqrt[a + I*b]*ArcTanh[Sqrt[a + b*Tan[c
+ d*x]]/Sqrt[a + I*b]] + (2*Sqrt[a + b*Tan[c + d*x]]*(-2*a^2 - 15*b^2 + a*b*Tan[c + d*x] + 3*b^2*Tan[c + d*x]^
2))/b^2)/(15*d)

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(369\) vs. \(2(133)=266\).

Time = 0.98 (sec) , antiderivative size = 370, normalized size of antiderivative = 2.33

method result size
derivativedivides \(\frac {\frac {2 \left (a +b \tan \left (d x +c \right )\right )^{\frac {5}{2}}}{5}-\frac {2 a \left (a +b \tan \left (d x +c \right )\right )^{\frac {3}{2}}}{3}-2 b^{2} \sqrt {a +b \tan \left (d x +c \right )}+2 b^{2} \left (\frac {\sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}\, \ln \left (b \tan \left (d x +c \right )+a +\sqrt {a +b \tan \left (d x +c \right )}\, \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}+\sqrt {a^{2}+b^{2}}\right )}{8}+\frac {\left (\sqrt {a^{2}+b^{2}}-a \right ) \arctan \left (\frac {2 \sqrt {a +b \tan \left (d x +c \right )}+\sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}}{\sqrt {2 \sqrt {a^{2}+b^{2}}-2 a}}\right )}{2 \sqrt {2 \sqrt {a^{2}+b^{2}}-2 a}}-\frac {\sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}\, \ln \left (\sqrt {a +b \tan \left (d x +c \right )}\, \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}-b \tan \left (d x +c \right )-a -\sqrt {a^{2}+b^{2}}\right )}{8}+\frac {\left (a -\sqrt {a^{2}+b^{2}}\right ) \arctan \left (\frac {\sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}-2 \sqrt {a +b \tan \left (d x +c \right )}}{\sqrt {2 \sqrt {a^{2}+b^{2}}-2 a}}\right )}{2 \sqrt {2 \sqrt {a^{2}+b^{2}}-2 a}}\right )}{b^{2} d}\) \(370\)
default \(\frac {\frac {2 \left (a +b \tan \left (d x +c \right )\right )^{\frac {5}{2}}}{5}-\frac {2 a \left (a +b \tan \left (d x +c \right )\right )^{\frac {3}{2}}}{3}-2 b^{2} \sqrt {a +b \tan \left (d x +c \right )}+2 b^{2} \left (\frac {\sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}\, \ln \left (b \tan \left (d x +c \right )+a +\sqrt {a +b \tan \left (d x +c \right )}\, \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}+\sqrt {a^{2}+b^{2}}\right )}{8}+\frac {\left (\sqrt {a^{2}+b^{2}}-a \right ) \arctan \left (\frac {2 \sqrt {a +b \tan \left (d x +c \right )}+\sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}}{\sqrt {2 \sqrt {a^{2}+b^{2}}-2 a}}\right )}{2 \sqrt {2 \sqrt {a^{2}+b^{2}}-2 a}}-\frac {\sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}\, \ln \left (\sqrt {a +b \tan \left (d x +c \right )}\, \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}-b \tan \left (d x +c \right )-a -\sqrt {a^{2}+b^{2}}\right )}{8}+\frac {\left (a -\sqrt {a^{2}+b^{2}}\right ) \arctan \left (\frac {\sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}-2 \sqrt {a +b \tan \left (d x +c \right )}}{\sqrt {2 \sqrt {a^{2}+b^{2}}-2 a}}\right )}{2 \sqrt {2 \sqrt {a^{2}+b^{2}}-2 a}}\right )}{b^{2} d}\) \(370\)

[In]

int((a+b*tan(d*x+c))^(1/2)*tan(d*x+c)^3,x,method=_RETURNVERBOSE)

[Out]

2/d/b^2*(1/5*(a+b*tan(d*x+c))^(5/2)-1/3*a*(a+b*tan(d*x+c))^(3/2)-b^2*(a+b*tan(d*x+c))^(1/2)+b^2*(1/8*(2*(a^2+b
^2)^(1/2)+2*a)^(1/2)*ln(b*tan(d*x+c)+a+(a+b*tan(d*x+c))^(1/2)*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)+(a^2+b^2)^(1/2))+1
/2*((a^2+b^2)^(1/2)-a)/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan((2*(a+b*tan(d*x+c))^(1/2)+(2*(a^2+b^2)^(1/2)+2*a)^
(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2))-1/8*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)*ln((a+b*tan(d*x+c))^(1/2)*(2*(a^2+b^2)
^(1/2)+2*a)^(1/2)-b*tan(d*x+c)-a-(a^2+b^2)^(1/2))+1/2*(a-(a^2+b^2)^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan
(((2*(a^2+b^2)^(1/2)+2*a)^(1/2)-2*(a+b*tan(d*x+c))^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2))))

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 334 vs. \(2 (129) = 258\).

Time = 0.26 (sec) , antiderivative size = 334, normalized size of antiderivative = 2.10 \[ \int \tan ^3(c+d x) \sqrt {a+b \tan (c+d x)} \, dx=\frac {15 \, b^{2} d \sqrt {\frac {d^{2} \sqrt {-\frac {b^{2}}{d^{4}}} + a}{d^{2}}} \log \left (d \sqrt {\frac {d^{2} \sqrt {-\frac {b^{2}}{d^{4}}} + a}{d^{2}}} + \sqrt {b \tan \left (d x + c\right ) + a}\right ) - 15 \, b^{2} d \sqrt {\frac {d^{2} \sqrt {-\frac {b^{2}}{d^{4}}} + a}{d^{2}}} \log \left (-d \sqrt {\frac {d^{2} \sqrt {-\frac {b^{2}}{d^{4}}} + a}{d^{2}}} + \sqrt {b \tan \left (d x + c\right ) + a}\right ) + 15 \, b^{2} d \sqrt {-\frac {d^{2} \sqrt {-\frac {b^{2}}{d^{4}}} - a}{d^{2}}} \log \left (d \sqrt {-\frac {d^{2} \sqrt {-\frac {b^{2}}{d^{4}}} - a}{d^{2}}} + \sqrt {b \tan \left (d x + c\right ) + a}\right ) - 15 \, b^{2} d \sqrt {-\frac {d^{2} \sqrt {-\frac {b^{2}}{d^{4}}} - a}{d^{2}}} \log \left (-d \sqrt {-\frac {d^{2} \sqrt {-\frac {b^{2}}{d^{4}}} - a}{d^{2}}} + \sqrt {b \tan \left (d x + c\right ) + a}\right ) + 4 \, {\left (3 \, b^{2} \tan \left (d x + c\right )^{2} + a b \tan \left (d x + c\right ) - 2 \, a^{2} - 15 \, b^{2}\right )} \sqrt {b \tan \left (d x + c\right ) + a}}{30 \, b^{2} d} \]

[In]

integrate((a+b*tan(d*x+c))^(1/2)*tan(d*x+c)^3,x, algorithm="fricas")

[Out]

1/30*(15*b^2*d*sqrt((d^2*sqrt(-b^2/d^4) + a)/d^2)*log(d*sqrt((d^2*sqrt(-b^2/d^4) + a)/d^2) + sqrt(b*tan(d*x +
c) + a)) - 15*b^2*d*sqrt((d^2*sqrt(-b^2/d^4) + a)/d^2)*log(-d*sqrt((d^2*sqrt(-b^2/d^4) + a)/d^2) + sqrt(b*tan(
d*x + c) + a)) + 15*b^2*d*sqrt(-(d^2*sqrt(-b^2/d^4) - a)/d^2)*log(d*sqrt(-(d^2*sqrt(-b^2/d^4) - a)/d^2) + sqrt
(b*tan(d*x + c) + a)) - 15*b^2*d*sqrt(-(d^2*sqrt(-b^2/d^4) - a)/d^2)*log(-d*sqrt(-(d^2*sqrt(-b^2/d^4) - a)/d^2
) + sqrt(b*tan(d*x + c) + a)) + 4*(3*b^2*tan(d*x + c)^2 + a*b*tan(d*x + c) - 2*a^2 - 15*b^2)*sqrt(b*tan(d*x +
c) + a))/(b^2*d)

Sympy [F]

\[ \int \tan ^3(c+d x) \sqrt {a+b \tan (c+d x)} \, dx=\int \sqrt {a + b \tan {\left (c + d x \right )}} \tan ^{3}{\left (c + d x \right )}\, dx \]

[In]

integrate((a+b*tan(d*x+c))**(1/2)*tan(d*x+c)**3,x)

[Out]

Integral(sqrt(a + b*tan(c + d*x))*tan(c + d*x)**3, x)

Maxima [F]

\[ \int \tan ^3(c+d x) \sqrt {a+b \tan (c+d x)} \, dx=\int { \sqrt {b \tan \left (d x + c\right ) + a} \tan \left (d x + c\right )^{3} \,d x } \]

[In]

integrate((a+b*tan(d*x+c))^(1/2)*tan(d*x+c)^3,x, algorithm="maxima")

[Out]

integrate(sqrt(b*tan(d*x + c) + a)*tan(d*x + c)^3, x)

Giac [F(-1)]

Timed out. \[ \int \tan ^3(c+d x) \sqrt {a+b \tan (c+d x)} \, dx=\text {Timed out} \]

[In]

integrate((a+b*tan(d*x+c))^(1/2)*tan(d*x+c)^3,x, algorithm="giac")

[Out]

Timed out

Mupad [B] (verification not implemented)

Time = 9.74 (sec) , antiderivative size = 354, normalized size of antiderivative = 2.23 \[ \int \tan ^3(c+d x) \sqrt {a+b \tan (c+d x)} \, dx=\left (\frac {2\,a^2}{b^2\,d}-\frac {2\,\left (a^2+b^2\right )}{b^2\,d}\right )\,\sqrt {a+b\,\mathrm {tan}\left (c+d\,x\right )}+\frac {2\,{\left (a+b\,\mathrm {tan}\left (c+d\,x\right )\right )}^{5/2}}{5\,b^2\,d}-\frac {2\,a\,{\left (a+b\,\mathrm {tan}\left (c+d\,x\right )\right )}^{3/2}}{3\,b^2\,d}+\mathrm {atan}\left (\frac {b^4\,\sqrt {\frac {a}{4\,d^2}-\frac {b\,1{}\mathrm {i}}{4\,d^2}}\,\sqrt {a+b\,\mathrm {tan}\left (c+d\,x\right )}\,32{}\mathrm {i}}{\frac {b^5\,16{}\mathrm {i}}{d}+\frac {a^2\,b^3\,16{}\mathrm {i}}{d}}+\frac {32\,a\,b^3\,\sqrt {\frac {a}{4\,d^2}-\frac {b\,1{}\mathrm {i}}{4\,d^2}}\,\sqrt {a+b\,\mathrm {tan}\left (c+d\,x\right )}}{\frac {b^5\,16{}\mathrm {i}}{d}+\frac {a^2\,b^3\,16{}\mathrm {i}}{d}}\right )\,\sqrt {\frac {a-b\,1{}\mathrm {i}}{4\,d^2}}\,2{}\mathrm {i}-\mathrm {atan}\left (\frac {b^4\,\sqrt {\frac {a}{4\,d^2}+\frac {b\,1{}\mathrm {i}}{4\,d^2}}\,\sqrt {a+b\,\mathrm {tan}\left (c+d\,x\right )}\,32{}\mathrm {i}}{\frac {b^5\,16{}\mathrm {i}}{d}+\frac {a^2\,b^3\,16{}\mathrm {i}}{d}}-\frac {32\,a\,b^3\,\sqrt {\frac {a}{4\,d^2}+\frac {b\,1{}\mathrm {i}}{4\,d^2}}\,\sqrt {a+b\,\mathrm {tan}\left (c+d\,x\right )}}{\frac {b^5\,16{}\mathrm {i}}{d}+\frac {a^2\,b^3\,16{}\mathrm {i}}{d}}\right )\,\sqrt {\frac {a+b\,1{}\mathrm {i}}{4\,d^2}}\,2{}\mathrm {i} \]

[In]

int(tan(c + d*x)^3*(a + b*tan(c + d*x))^(1/2),x)

[Out]

((2*a^2)/(b^2*d) - (2*(a^2 + b^2))/(b^2*d))*(a + b*tan(c + d*x))^(1/2) + atan((b^4*(a/(4*d^2) - (b*1i)/(4*d^2)
)^(1/2)*(a + b*tan(c + d*x))^(1/2)*32i)/((b^5*16i)/d + (a^2*b^3*16i)/d) + (32*a*b^3*(a/(4*d^2) - (b*1i)/(4*d^2
))^(1/2)*(a + b*tan(c + d*x))^(1/2))/((b^5*16i)/d + (a^2*b^3*16i)/d))*((a - b*1i)/(4*d^2))^(1/2)*2i - atan((b^
4*(a/(4*d^2) + (b*1i)/(4*d^2))^(1/2)*(a + b*tan(c + d*x))^(1/2)*32i)/((b^5*16i)/d + (a^2*b^3*16i)/d) - (32*a*b
^3*(a/(4*d^2) + (b*1i)/(4*d^2))^(1/2)*(a + b*tan(c + d*x))^(1/2))/((b^5*16i)/d + (a^2*b^3*16i)/d))*((a + b*1i)
/(4*d^2))^(1/2)*2i + (2*(a + b*tan(c + d*x))^(5/2))/(5*b^2*d) - (2*a*(a + b*tan(c + d*x))^(3/2))/(3*b^2*d)